Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS One ; 17(8): e0272373, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1968877

RESUMEN

BACKGROUND: Severe coronavirus disease 2019 (COVID-19) patients frequently require mechanical ventilation (MV) and undergo prolonged periods of bed rest with restriction of activities during the intensive care unit (ICU) stay. Our aim was to address the degree of mobilization in critically ill patients with COVID-19 undergoing to MV support. METHODS: Retrospective single-center cohort study. We analyzed patients' mobility level, through the Perme ICU Mobility Score (Perme Score) of COVID-19 patients admitted to the ICU. The Perme Mobility Index (PMI) was calculated [PMI = ΔPerme Score (ICU discharge-ICU admission)/ICU length of stay], and patients were categorized as "improved" (PMI > 0) or "not improved" (PMI ≤ 0). Comparisons were performed with stratification according to the use of MV support. RESULTS: From February 2020, to February 2021, 1,297 patients with COVID-19 were admitted to the ICU and assessed for eligibility. Out of those, 949 patients were included in the study [524 (55.2%) were classified as "improved" and 425 (44.8%) as "not improved"], and 396 (41.7%) received MV during ICU stay. The overall rate of patients out of bed and able to walk ≥ 30 meters at ICU discharge were, respectively, 526 (63.3%) and 170 (20.5%). After adjusting for confounders, independent predictors of improvement of mobility level were frailty (OR: 0.52; 95% CI: 0.29-0.94; p = 0.03); SAPS III Score (OR: 0.75; 95% CI: 0.57-0.99; p = 0.04); SOFA Score (OR: 0.58; 95% CI: 0.43-0.78; p < 0.001); use of MV after the first hour of ICU admission (OR: 0.41; 95% CI: 0.17-0.99; p = 0.04); tracheostomy (OR: 0.54; 95% CI: 0.30-0.95; p = 0.03); use of extracorporeal membrane oxygenation (OR: 0.21; 95% CI: 0.05-0.8; p = 0.03); neuromuscular blockade (OR: 0.53; 95% CI: 0.3-0.95; p = 0.03); a higher Perme Score at admission (OR: 0.35; 95% CI: 0.28-0.43; p < 0.001); palliative care (OR: 0.05; 95% CI: 0.01-0.16; p < 0.001); and a longer ICU stay (OR: 0.79; 95% CI: 0.61-0.97; p = 0.04) were associated with a lower chance of mobility improvement, while non-invasive ventilation within the first hour of ICU admission and after the first hour of ICU admission (OR: 2.45; 95% CI: 1.59-3.81; p < 0.001) and (OR: 2.25; 95% CI: 1.56-3.26; p < 0.001), respectively; and vasopressor use (OR: 2.39; 95% CI: 1.07-5.5; p = 0.03) were associated with a higher chance of mobility improvement. CONCLUSION: The use of MV reduced mobility status in less than half of critically ill COVID-19 patients.


Asunto(s)
COVID-19 , Respiración Artificial , COVID-19/terapia , Estudios de Cohortes , Enfermedad Crítica/terapia , Humanos , Unidades de Cuidados Intensivos , Estudios Retrospectivos
2.
Einstein (Sao Paulo) ; 19: eAO6739, 2021.
Artículo en Inglés, Portugués | MEDLINE | ID: covidwho-1559059

RESUMEN

OBJECTIVE: To describe clinical characteristics, resource use, outcomes, and to identify predictors of in-hospital mortality of patients with COVID-19 admitted to the intensive care unit. METHODS: Retrospective single-center cohort study conducted at a private hospital in São Paulo (SP), Brazil. All consecutive adult (≥18 years) patients admitted to the intensive care unit, between March 4, 2020 and February 28, 2021 were included in this study. Patients were categorized between survivors and non-survivors according to hospital discharge. RESULTS: During the study period, 1,296 patients [median (interquartile range) age: 66 (53-77) years] with COVID-19 were admitted to the intensive care unit. Out of those, 170 (13.6%) died at hospital (non-survivors) and 1,078 (86.4%) were discharged (survivors). Compared to survivors, non-survivors were older [80 (70-88) versus 63 (50-74) years; p<0.001], had a higher Simplified Acute Physiology Score 3 [59 (54-66) versus 47 (42-53) points; p<0.001], and presented comorbidities more frequently. During the intensive care unit stay, 56.6% of patients received noninvasive ventilation, 32.9% received mechanical ventilation, 31.3% used high flow nasal cannula, 11.7% received renal replacement therapy, and 1.5% used extracorporeal membrane oxygenation. Independent predictors of in-hospital mortality included age, Sequential Organ Failure Assessment score, Charlson Comorbidity Index, need for mechanical ventilation, high flow nasal cannula, renal replacement therapy, and extracorporeal membrane oxygenation support. CONCLUSION: Patients with severe COVID-19 admitted to the intensive care unit exhibited a considerable morbidity and mortality, demanding substantial organ support, and prolonged intensive care unit and hospital stay.


Asunto(s)
COVID-19 , Pandemias , Adulto , Anciano , Brasil/epidemiología , Estudios de Cohortes , Mortalidad Hospitalaria , Humanos , Unidades de Cuidados Intensivos , Respiración Artificial , Estudios Retrospectivos , SARS-CoV-2
3.
PLoS One ; 16(4): e0250180, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1197383

RESUMEN

INTRODUCTION: The Coronavirus Disease 2019 (COVID-19) outbreak is evolving rapidly worldwide. Data on the mobility level of patients with COVID-19 in the intensive care unit (ICU) are needed. OBJECTIVE: To describe the mobility level of patients with COVID-19 admitted to the ICU and to address factors associated with mobility level at the time of ICU discharge. METHODS: Single center, retrospective cohort study. Consecutive patients admitted to the ICU with confirmed COVID-19 infection were analyzed. The mobility status was assessed by the Perme Score at admission and discharge from ICU with higher scores indicating higher mobility level. The Perme Mobility Index (PMI) was calculated [PMI = ΔPerme Score (ICU discharge-ICU admission)/ICU length of stay]. Based on the PMI, patients were divided into two groups: "Improved" (PMI > 0) and "Not improved" (PMI ≤ 0). RESULTS: A total of 136 patients were included in this analysis. The hospital mortality rate was 16.2%. The Perme Score improved significantly when comparing ICU discharge with ICU admission [20.0 (7-28) points versus 7.0 (0-16) points; P < 0.001]. A total of 88 patients (64.7%) improved their mobility level during ICU stay, and the median PMI of these patients was 1.5 (0.6-3.4). Patients in the improved group had a lower duration of mechanical ventilation [10 (5-14) days versus 15 (8-24) days; P = 0.021], lower hospital length of stay [25 (12-37) days versus 30 (11-48) days; P < 0.001], and lower ICU and hospital mortality rate. Independent predictors for mobility level were lower age, lower Charlson Comorbidity Index, and not having received renal replacement therapy. CONCLUSION: Patients' mobility level was low at ICU admission; however, most patients improved their mobility level during ICU stay. Risk factors associated with the mobility level were age, comorbidities, and use of renal replacement therapy.


Asunto(s)
COVID-19/fisiopatología , Limitación de la Movilidad , Anciano , Anciano de 80 o más Años , Brasil/epidemiología , COVID-19/epidemiología , COVID-19/terapia , Estudios de Cohortes , Cuidados Críticos , Femenino , Mortalidad Hospitalaria , Hospitalización , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Alta del Paciente , Respiración Artificial , Estudios Retrospectivos , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación , Resultado del Tratamiento
5.
Einstein (Säo Paulo) ; 18:eAE5793-eAE5793, 2020.
Artículo en Inglés | LILACS (Américas) | ID: grc-742287

RESUMEN

ABSTRACT In December 2019, a series of patients with severe pneumonia were identified in Wuhan, Hubei province, China, who progressed to severe acute respiratory syndrome and acute respiratory distress syndrome. Subsequently, COVID-19 was attributed to a new betacoronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Approximately 20% of patients diagnosed as COVID-19 develop severe forms of the disease, including acute hypoxemic respiratory failure, severe acute respiratory syndrome, acute respiratory distress syndrome and acute renal failure and require intensive care. There is no randomized controlled clinical trial addressing potential therapies for patients with confirmed COVID-19 infection at the time of publishing these treatment recommendations. Therefore, these recommendations are based predominantly on the opinion of experts (level C of recommendation). RESUMO Em dezembro de 2019, uma série de pacientes com pneumonia grave foi identificada em Wuhan, província de Hubei, na China. Esses pacientes evoluíram para síndrome respiratória aguda grave e síndrome do desconforto respiratório agudo. Posteriormente, a COVID-19 foi atribuída a um novo betacoronavírus, o coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2). Cerca de 20% dos pacientes com diagnóstico de COVID-19 desenvolvem formas graves da doença, incluindo insuficiência respiratória aguda hipoxêmica, síndrome respiratória aguda grave, síndrome do desconforto respiratório agudo e insuficiência renal aguda e requerem admissão em unidade de terapia intensiva. Não há nenhum ensaio clínico randomizado controlado que avalie potenciais tratamentos para pacientes com infecção confirmada pela COVID-19 no momento da publicação destas recomendações de tratamento. Dessa forma, essas recomendações são baseadas predominantemente na opinião de especialistas (grau de recomendação de nível C).

7.
Einstein (Sao Paulo) ; 18: eAE5793, 2020.
Artículo en Inglés, Portugués | MEDLINE | ID: covidwho-596025

RESUMEN

In December 2019, a series of patients with severe pneumonia were identified in Wuhan, Hubei province, China, who progressed to severe acute respiratory syndrome and acute respiratory distress syndrome. Subsequently, COVID-19 was attributed to a new betacoronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Approximately 20% of patients diagnosed as COVID-19 develop severe forms of the disease, including acute hypoxemic respiratory failure, severe acute respiratory syndrome, acute respiratory distress syndrome and acute renal failure and require intensive care. There is no randomized controlled clinical trial addressing potential therapies for patients with confirmed COVID-19 infection at the time of publishing these treatment recommendations. Therefore, these recommendations are based predominantly on the opinion of experts (level C of recommendation).


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/diagnóstico , Unidades de Cuidados Intensivos/normas , Neumonía Viral/diagnóstico , Respiración Artificial/normas , COVID-19 , Lista de Verificación , Infecciones por Coronavirus/terapia , Enfermedad Crítica , Humanos , Pandemias , Neumonía Viral/terapia , Guías de Práctica Clínica como Asunto , Respiración Artificial/métodos , SARS-CoV-2 , Síndrome Respiratorio Agudo Grave/diagnóstico , Síndrome Respiratorio Agudo Grave/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA